STA202: STATISTICS AND PROBABILITY II - FUO - 2019 SESSION - EXAM PAST QUESTIONS (FUOEXAMS.BLOGSPOT.COM)

 STA202: STATISTICS AND PROBABILITY II

(FEDERAL UNIVERSITY OTUOKE, 2018/2019 SESSION 2ND SEMESTER)

INSTRUCTION: ANSWER 4 QUESTIONS ONLY

 

1.      QUESTION ONE

a.      A warehouse contains ten machines, five of which are defective. A company selects six of the machines at random, thinking all of them are in working conditions.

                                                              i.      Identify the random variable X for the problem

                                                            ii.      State the probability function of the random variable X and define all parameters involved

                                                          iii.      What is the probability that:

1.      All six of the machines are non-defective?

2.      At most two of them are defective?

b.      A fair coin is tossed four times. Obtain the

                                                              i.      Probability distribution for the random variable Y representing the number of heads appearing during the experiment

                                                            ii.      Cumulative distribution function of Y,F(Y)

2.      QUESTION TWO

a.      Let X have a density function given as: f(x) = {kx(x – 1)2; 0 x 2 where k is a constant. Find

                                                              i.      The value of k such that f(x) is a valid probability density function.

                                                            ii.      P(0 X  )

                                                          iii.      F(x)

b.      Find the mean and variance of a random variable, Y having the distribution

f(y) =1/(k2 –k1); k1 y k2

            0;        otherwise

                                    K1 and k2 are minimum and maximum values of y respectively

3.      QUESTION THREE

a.      Q3

                                                              i.      Find the moment generating function of a random variable X, having the distribution below:

f(x) = {pqx-1; x = 1,2,3, …

               0;                    otherwise

Where p + q = 1

                                                            ii.      Use your result in 3(a)(i) above to determine the first and second moment of X about the origin.

b.      Consider the probability distribution below:

x

21

22

23

24

25

26

f(x)

0.05

0.20

0.30

0.25

0.15

0.05

Obtain E(X2 – 5) and E(2X3 + 2).

c.       Define the following terms:

                                                              i.      Random variable

                                                            ii.      Kth moment about the mean

                                                          iii.      Mathematical Expectation of a random variable

4.      QUESTION FOUR

a.      Define the following random variables

                                                              i.      Binomial

                                                            ii.      Geometric

                                                          iii.      Hyper-geometric

                                                           iv.      Poisson

                                                             v.      Normal

5.      QUESTION FIVE

a.      Define Chebyshev’s inequality

b.      A historic data shows that the distribution of a random variable can be modeled by a probability density function f(x) = 20e-20(x-12.5) ,x 12.5, calculate the following

                                                              i.      P(x > 12.6)

                                                            ii.      P(12.5 < x < 12.6)

6.      QUESTION SIX

a.      State the central limit theorem

b.      State the convolution of the pdf’s of the  random variables X1 and X2

Comments

Popular posts from this blog

FEN 202: ENGINEERING MATHEMATICS III TEST (CARRY-OVER) 2021